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Forest Health Data

Forest Health Data

o Aim: Identify predictors of the health status of trees

o Data: Yearly visual forest health inventories carried out from 1983 to
2004 in a northern Bavarian forest district (Spessart)

@ 83 plots of beeches within a 15 km x 10 km area

e Response: binary defoliation indicator at plot i in year t: (y; =1
defoliation above 25%)

o Large data set (n = 1793)

= Longitudinal data with spatial structure
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Forest Health Data

Continuous: @ average age of trees at the observation plot
@ elevation above sea level in meters
@ inclination of slope in percent
@ depth of soil layer in centimeters
@ pH-value at 0-2cm depth
@ density of forest canopy in percent
°
°
°
°

thickness of humus layer in 5 ordered categories
base saturation in 4 ordered categories

Categorical:

Binary: type of stand

application of fertilisation

@ Previous analyses resulted in models that contained linear and smooth
effects as well as categorical covariates.
o Additionally, a spatial effect and a random effect for the plot could be
identified.
= Boosting can estimate all effects and includes intrinsic variable
selection and model choice.

DAGStat 2010 3/15



Model Fitting with Component-Wise Boosting

Structured Additive Model
pi = E(y[x;) = h(ni(x;))

with response function h and additive predictor

J
ni(xi) = Bo+ > _ fi(xi),

J=1

@ Model fitting aims at minimizing the expected loss with
appropriate loss function p, e.g.,
squared error loss p(y,n(x)) = (v — n(x))? for Gaussian models
negative log-likelihood for GLMs

@ In practice: Minimization of the empirical risk
n
-1
n ZP(}/imi(xi))
i=1



- Cesmig@elday) ...
Boosting
@ minimizes empirical risk (e.g., negative log likelihood)
@ in a stagewise fashion
e via functional gradient descent (FGD).

In each iteration m
[ml _  9plyim)

o (negative) gradient of the loss function u; " = — =55 gl is

estimated via base-learners (6l = gi(x))
@ update only model term corresponding to the best-fitting base-learner
gj- (based on the RSS):
add a small fraction v of the estimate g« (e.g., 10%) to the model
= variable and model selection is achieved

Practical notes
o Base-learners represent functions f;(-) from structured additive
predictor (in the simplest case)
@ We get an interpretable model similar to models from MLE
@ Regularization via base-learner selection and shrinkage
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Problems (and a Solution)

Problems (and a Solution)

@ Variable selection and model choice can be seriously biased if
some base-learners offer higher flexibility.
o Variable Selection Bias:
e.g., categorical covariate (with many categories) > continuous
covariate
e Model Choice Bias:
e.g., smooth effect > linear effect

@ Unbiased (or at least improved) selection desired
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Problems (and a Solution)

Problems (and a Solution)

@ Variable selection and model choice can be seriously biased if
some base-learners offer higher flexibility.

o Variable Selection Bias:
e.g., categorical covariate (with many categories) > continuous
covariate

o Model Choice Bias:
e.g., smooth effect > linear effect

@ Unbiased (or at least improved) selection desired

@ Possible solution: Make the competitors comparable with respect to
their flexibility (measured by the degrees of freedom)
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Penalized Least Squares Base-Learners
Consider (penalized) least squares base-learners

gi(x) = X(XTX + AK)7IXT wlm]

=:S (smoother matrix)

where X is a suitable design matrix.

Examples of penalized LS base-learners

o Unpenalized base-learners (A = 0)

o Ridge-penalized base-learners for unordered categorical covariates
(X e.g., dummy coded)

o Base-learners with first order difference penalty for ordered categorical
covariates (Gertheiss & Tutz, 2009)
(X e.g., dummy coded)

@ P-spline base-learners with second order difference penalty for
continuous covariates
(X B-spline basis expansion)
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Penalized Least Squares Base-Learners

Set df = 1 for all base-learners to prevent selection bias

NB: Final model can adopt (much) higher flexibility due to the

iterative nature of boosting!

Theoretical Considerations  (Hofner, Hothorn, Kneib, & Schmid, 2009)

Instead of
df := trace(S)

define
df := trace(2§ — S'S)

(tailored for the comparison of RSS (see also Buja, Hastie, & Tibshirani, 1989))
v,
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“Null Model” with Non-Informative Factor

@ 25 non-informative continuous covariates

@ 1 non-informative categorical covariate with increasing # of categories
e y~ N(0,1)

e n =150, B = 1000
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- Reuts
“Null Model” with Non-Informative Factor

@ 25 non-informative continuous covariates

@ 1 non-informative categorical covariate with increasing # of categories
e y~ N(0,1)

e n =150, B = 1000

Selection Frequencies
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“Power Case” with Non-Informative Factor

e 5 continuous covariates with Binro = (=2, —1,1,2,3)7
20 additional non-informative continuous covariates
@ 1 non-informative categorical covariate with increasing # of categories
o y|x ~ N(xT3,0?), with 02 such that R?> ~ 0.3
e n=150, B=100
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“Power Case” with (Potentially) Smooth Effects

@ 5 continuous covariates with Binfo = (-2, —1,1,2,3) "
20 additional non-informative continuous covariates
@ 1 continuous covariate with linear effect (5, = 1.5)
@ Otherwise same simulation setting as in “factor case”
o Add (A) linear effect + smooth effect (4 df)
or (B) linear effect + smooth deviation from linearity (1 df)
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... ForestHeathData
Forest Health Data - Results

Using component-wise (penalized) least squares base-learners with 1df
each, we get a final model with

Parametric effects for fertilisation (binary), base saturation (ordinal),
age and calender time
Nonparametric effect for canopy density

Spatial effect + unstructured random effect
(with a clear domination of the latter)

Not selected: thickness of humus layer, ph-value, soil depth, type of
stand, inclination of slope, elevation above sea level
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Forest Health Data - Results (ctd.)
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Take-Home Messages

@ One can fit a wide range of models by boosting:
(generalized) linear models, survival models, . ..
(generalized) additive models, structured additive models, ...

@ Boosting results in interpretable models if one uses linear or smooth
base-learners (i.e., no tree base-learners).

@ Boosting (intrinsically) allows for variable / model selection.

@ We get a severe reduction of selection bias by using penalized
base-learners with equal df.

o Use a suitable definition of degrees of freedom df = trace(2S — S'S).

R-package mboost available on CRAN to fit all the models covered in this
talk (and many more) (Hothorn, Biihimann, Kneib, Schmid, & Hofner, 2010)

DAGStat 2010 14 / 15



References

Buja, A., Hastie, T., & Tibshirani, R. (1989). Linear smoothers and additive
models (with discussion). The Annals of Statistics, 17, 453-555.
Gertheiss, J., & Tutz, G. (2009). Penalized regression with ordinal predictors.

International Statistical Review, 77, 345-365.

Hofner, B., Hothorn, T., Kneib, T., & Schmid, M. (2009). A framework for
unbiased model selection based on boosting (Tech. Rep. No. 72).
Department of Statistics, Ludwig-Maximilans-Universitat Miinchen.

Hothorn, T., Biihlmann, P., Kneib, T., Schmid, M., & Hofner, B. (2010).
mboost: Model-based boosting. (R package version 2.0-3)

Find out more: http://benjaminhofner.de/
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