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Introduction Forest Health Data

Forest Health Data
Aim: Identify predictors of the health status of trees
Data: Yearly visual forest health inventories carried out from 1983 to
2004 in a northern Bavarian forest district (Spessart)
83 plots of beeches within a 15 km × 10 km area
Response: binary defoliation indicator at plot i in year t: (yit = 1
defoliation above 25%)
Large data set (n = 1793)

⇒ Longitudinal data with spatial structure
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Introduction Forest Health Data

Covariates
Continuous: average age of trees at the observation plot

elevation above sea level in meters
inclination of slope in percent
depth of soil layer in centimeters
pH-value at 0-2cm depth
density of forest canopy in percent

Categorical: thickness of humus layer in 5 ordered categories
base saturation in 4 ordered categories

Binary: type of stand
application of fertilisation

Previous analyses resulted in models that contained linear and smooth
effects as well as categorical covariates.

Additionally, a spatial effect and a random effect for the plot could be
identified.

⇒ Boosting can estimate all effects and includes intrinsic variable
selection and model choice.
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Boosting (in a Nutshell)

Model Fitting with Component-Wise Boosting

Structured Additive Model

µi = E(y |xi ) = h(ηi (xi ))

with response function h and additive predictor

ηi (xi ) = β0 +
J∑

j=1

fj(xi ),

Model fitting aims at minimizing the expected loss with
appropriate loss function ρ, e.g.,

squared error loss ρ(y , η(x)) = (y − η(x))2 for Gaussian models
negative log-likelihood for GLMs

In practice: Minimization of the empirical risk

n−1
n∑

i=1

ρ(yi , ηi (xi ))
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Boosting (in a Nutshell)

Boosting
minimizes empirical risk (e.g., negative log likelihood)
in a stagewise fashion
via functional gradient descent (FGD).

In each iteration m
(negative) gradient of the loss function u

[m]
i = − ∂ρ(yi ,η)

∂η

∣∣∣
η=η̂

[m−1]
i

is

estimated via base-learners (û[m] = ĝj(x))
update only model term corresponding to the best-fitting base-learner
ĝj∗ (based on the RSS):
add a small fraction ν of the estimate ĝj∗ (e.g., 10%) to the model

⇒ variable and model selection is achieved

Practical notes
Base-learners represent functions fj(·) from structured additive
predictor (in the simplest case)
We get an interpretable model similar to models from MLE
Regularization via base-learner selection and shrinkage
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Boosting (in a Nutshell) Problems (and a Solution)

Problems (and a Solution)

Variable selection and model choice can be seriously biased if
some base-learners offer higher flexibility.

Variable Selection Bias:
e.g., categorical covariate (with many categories) � continuous
covariate
Model Choice Bias:
e.g., smooth effect � linear effect

Unbiased (or at least improved) selection desired

Possible solution: Make the competitors comparable with respect to
their flexibility (measured by the degrees of freedom)
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Penalized Least Squares Base-Learners

Penalized Least Squares Base-Learners
Consider (penalized) least squares base-learners

ĝj(x) = X(X>X + λK)−1X>︸ ︷︷ ︸
=:S (smoother matrix)

u[m],

where X is a suitable design matrix.

Examples of penalized LS base-learners
Unpenalized base-learners (λ = 0)

Ridge-penalized base-learners for unordered categorical covariates
(X e.g., dummy coded)

Base-learners with first order difference penalty for ordered categorical
covariates (Gertheiss & Tutz, 2009)

(X e.g., dummy coded)

P-spline base-learners with second order difference penalty for
continuous covariates
(X B-spline basis expansion)
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Penalized Least Squares Base-Learners

Penalized Least Squares Base-Learners

Central Idea

Set df = 1 for all base-learners to prevent selection bias

NB: Final model can adopt (much) higher flexibility due to the

iterative nature of boosting!

Theoretical Considerations (Hofner, Hothorn, Kneib, & Schmid, 2009)

Instead of
df := trace(S)

define
df := trace(2S− S>S)

(tailored for the comparison of RSS (see also Buja, Hastie, & Tibshirani, 1989))
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Results

“Null Model” with Non-Informative Factor

25 non-informative continuous covariates

1 non-informative categorical covariate with increasing # of categories

y ∼ N(0, 1)

n = 150, B = 1000
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(a) Unpenalized Base-Learner
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(b) Ridge Penalized Base-Learner
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Results

“Power Case” with Non-Informative Factor
5 continuous covariates with βinfo = (−2,−1, 1, 2, 3)>

20 additional non-informative continuous covariates
1 non-informative categorical covariate with increasing # of categories
y |x ∼ N(x>β, σ2), with σ2 such that R2 ≈ 0.3
n = 150, B = 100
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Results

“Power Case” with (Potentially) Smooth Effects
5 continuous covariates with βinfo = (−2,−1, 1, 2, 3)>

20 additional non-informative continuous covariates
1 continuous covariate with linear effect (βz1 = 1.5)
Otherwise same simulation setting as in “factor case”
Add (A) linear effect + smooth effect (4 df)
or (B) linear effect + smooth deviation from linearity (1 df)
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Forest Health Data

Forest Health Data - Results

Using component-wise (penalized) least squares base-learners with 1 df
each, we get a final model with

Parametric effects for fertilisation (binary), base saturation (ordinal),
age and calender time

Nonparametric effect for canopy density

Spatial effect + unstructured random effect
(with a clear domination of the latter)

Not selected: thickness of humus layer, ph-value, soil depth, type of
stand, inclination of slope, elevation above sea level
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Forest Health Data

Forest Health Data - Results (ctd.)
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Key Messages

Take-Home Messages

One can fit a wide range of models by boosting:
(generalized) linear models, survival models, . . .
(generalized) additive models, structured additive models, . . .

Boosting results in interpretable models if one uses linear or smooth
base-learners (i.e., no tree base-learners).

Boosting (intrinsically) allows for variable / model selection.

We get a severe reduction of selection bias by using penalized
base-learners with equal df.

Use a suitable definition of degrees of freedom df = trace(2S− S>S).

R-package mboost available on CRAN to fit all the models covered in this
talk (and many more) (Hothorn, Bühlmann, Kneib, Schmid, & Hofner, 2010)
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