Model-Based Boosting: Unbiased Variable Selection and Model Choice

Benjamin Hofner¹

Institut für Medizininformatik, Biometrie und Epidemiologie (IMBE) Friedrich-Alexander-Universität Erlangen-Nürnberg

joint work with Torsten Hothorn, Thomas Kneib and Matthias Schmid

DAGStat 2010 - Statistik unter einem Dach 24.03.2010 TU Dortmund

¹benjamin.hofner@imbe.med.uni-erlangen.de

Forest Health Data

- Aim: Identify predictors of the health status of trees
- **Data:** Yearly visual forest health inventories carried out from 1983 to 2004 in a northern Bavarian forest district (Spessart)
- $\bullet~$ 83 plots of beeches within a 15 km $\times~$ 10 km area
- **Response:** binary defoliation indicator at plot *i* in year *t*: (*y*_{*it*} = 1 defoliation above 25%)
- Large data set (n = 1793)
- \Rightarrow Longitudinal data with spatial structure

Covariates	
Continuous:	 average age of trees at the observation plot elevation above sea level in meters inclination of slope in percent depth of soil layer in centimeters pH-value at 0-2cm depth density of forest canopy in percent
Categorical:	 thickness of humus layer in 5 ordered categories base saturation in 4 ordered categories
Binary:	type of standapplication of fertilisation

- Previous analyses resulted in models that contained linear and smooth effects as well as categorical covariates.
- Additionally, a spatial effect and a random effect for the plot could be identified.
- \Rightarrow Boosting can estimate all effects and includes intrinsic variable selection and model choice.

Benjamin Hofner (IMBE)

Model Fitting with Component-Wise Boosting

Structured Additive Model

$$\mu_i = \mathbb{E}(y|\mathbf{x}_i) = h(\eta_i(\mathbf{x}_i))$$

with response function h and additive predictor

$$\eta_i(\mathbf{x}_i) = \beta_0 + \sum_{j=1}^J f_j(\mathbf{x}_i),$$

Model fitting aims at minimizing the expected loss with appropriate loss function ρ, e.g., squared error loss ρ(y, η(x)) = (y - η(x))² for Gaussian models negative log-likelihood for GLMs

• In practice: Minimization of the empirical risk

$$n^{-1}\sum_{i=1}^n \rho(y_i,\eta_i(\mathbf{x}_i))$$

Boosting

- minimizes empirical risk (e.g., negative log likelihood)
- in a stagewise fashion
- via functional gradient descent (FGD).

In each iteration m

• (negative) gradient of the loss function $u_i^{[m]} = -\frac{\partial \rho(y_i,\eta)}{\partial \eta}\Big|_{\eta=\hat{\eta}_i^{[m-1]}}$ is estimated via base-learners $(\hat{\mathbf{u}}^{[m]} = \hat{g}_i(\mathbf{x}))$

• update only model term corresponding to the best-fitting base-learner \hat{g}_{j^*} (based on the RSS):

add a small fraction ν of the estimate \hat{g}_{j^*} (e.g., 10%) to the model

 $\Rightarrow~$ variable and model selection is achieved

Practical notes

- Base-learners represent functions $f_j(\cdot)$ from structured additive predictor (in the simplest case)
- We get an interpretable model similar to models from MLE
- Regularization via base-learner selection and shrinkage

Benjamin Hofner (IMBE)

Unbiased Variable and Model Selection

Problems (and a Solution)

- Variable selection and model choice can be seriously biased if some base-learners offer higher flexibility.
 - Variable Selection Bias:
 e.g., categorical covariate (with many categories) ≻ continuous covariate
 - Model Choice Bias:
 - e.g., smooth effect \succ linear effect
- Unbiased (or at least improved) selection desired
- **Possible solution:** Make the competitors comparable with respect to their flexibility (measured by the degrees of freedom)

Problems (and a Solution)

- Variable selection and model choice can be seriously biased if some base-learners offer higher flexibility.
 - Variable Selection Bias:
 e.g., categorical covariate (with many categories) ≻ continuous covariate
 - Model Choice Bias:
 - e.g., smooth effect \succ linear effect
- Unbiased (or at least improved) selection desired
- **Possible solution:** Make the competitors comparable with respect to their flexibility (measured by the degrees of freedom)

Penalized Least Squares Base-Learners

Consider (penalized) least squares base-learners

$$\hat{g}_j(\mathbf{x}) = \underbrace{\mathbf{X}(\mathbf{X}^\top \mathbf{X} + \lambda \mathbf{K})^{-1} \mathbf{X}^\top}_{=:\mathbf{S} \text{ (smoother matrix)}} \mathbf{u}^{[m]},$$

where \mathbf{X} is a suitable design matrix.

Examples of penalized LS base-learners

- Unpenalized base-learners ($\lambda = 0$)
- Ridge-penalized base-learners for unordered categorical covariates (X e.g., dummy coded)
- Base-learners with first order difference penalty for ordered categorical covariates (Gertheiss & Tutz, 2009)

(X e.g., dummy coded)

- P-spline base-learners with second order difference penalty for continuous covariates
 - (**X** B-spline basis expansion)

Penalized Least Squares Base-Learners

Central Idea

Set df = 1 for all base-learners to prevent selection bias

NB: Final model can adopt (much) higher flexibility due to the iterative nature of boosting!

Theoretical Considerations (Hofner, Hothorn, Kneib, & Schmid, 2009) Instead of

df := trace(S)

define

(tailored for the comparison of RSS (see also Buja, Hastie, & Tibshirani, 1989))

"Null Model" with Non-Informative Factor

- 25 non-informative continuous covariates
- 1 non-informative categorical covariate with increasing # of categories
- *y* ∼ *N*(0, 1)
- n = 150, B = 1000

"Null Model" with Non-Informative Factor

- 25 non-informative continuous covariates
- 1 non-informative categorical covariate with increasing # of categories
- *y* ∼ *N*(0, 1)
- *n* = 150, *B* = 1000

Selection Frequencies

"Power Case" with Non-Informative Factor

- 5 continuous covariates with $\beta_{info} = (-2, -1, 1, 2, 3)^{\top}$ 20 additional non-informative continuous covariates
- 1 non-informative categorical covariate with increasing # of categories

•
$$y|x \sim N(x^{ op}eta, \sigma^2)$$
, with σ^2 such that $R^2 pprox 0.3$

• *n* = 150, *B* = 100

"Power Case" with Non-Informative Factor

- 5 continuous covariates with $\beta_{info} = (-2, -1, 1, 2, 3)^{\top}$ 20 additional non-informative continuous covariates
- 1 non-informative categorical covariate with increasing # of categories

•
$$y|x \sim N(x^{ op}eta, \sigma^2)$$
, with σ^2 such that $R^2 \approx 0.3$

• *n* = 150, *B* = 100

"Power Case" with (Potentially) Smooth Effects

- 5 continuous covariates with $\beta_{info} = (-2, -1, 1, 2, 3)^{\top}$ 20 additional non-informative continuous covariates
- 1 continuous covariate with linear effect ($\beta_{z_1} = 1.5$)
- Otherwise same simulation setting as in "factor case"
- Add (A) linear effect + smooth effect (4 df)
 - or (B) linear effect + smooth deviation from linearity (1 df)

"Power Case" with (Potentially) Smooth Effects

- 5 continuous covariates with β_{info} = (-2, -1, 1, 2, 3)[⊤]
 20 additional non-informative continuous covariates
- 1 continuous covariate with linear effect ($\beta_{z_1} = 1.5$)
- Otherwise same simulation setting as in "factor case"
- Add (A) linear effect + smooth effect (4 df)
 - or (B) linear effect + smooth deviation from linearity (1 df)

Forest Health Data - Results

Using component-wise (penalized) least squares base-learners with 1 df each, we get a **final model** with

Parametric effects for fertilisation (binary), base saturation (ordinal), age and calender time

Nonparametric effect for canopy density

Spatial effect + unstructured random effect (with a clear domination of the latter)

Not selected: thickness of humus layer, ph-value, soil depth, type of stand, inclination of slope, elevation above sea level

Forest Health Data

Forest Health Data - Results (ctd.)

Further linear	effects
Covariates	β
Fertilization	-0.760
Age	0.016
Year	0.068

Take-Home Messages

- One can fit a wide range of models by boosting: (generalized) linear models, survival models, (generalized) additive models, structured additive models,
- Boosting results in interpretable models if one uses linear or smooth base-learners (i.e., no tree base-learners).
- Boosting (intrinsically) allows for variable / model selection.
- We get a severe reduction of selection bias by using penalized base-learners with equal df.
- Use a suitable definition of degrees of freedom df = trace($2\mathbf{S} \mathbf{S}^{\top}\mathbf{S}$).

R-package **mboost** available on CRAN to fit all the models covered in this talk (and many more) (Hothorn, Bühlmann, Kneib, Schmid, & Hofner, 2010)

References

Buja, A., Hastie, T., & Tibshirani, R. (1989). Linear smoothers and additive models (with discussion). The Annals of Statistics, 17, 453–555.

- Gertheiss, J., & Tutz, G. (2009). Penalized regression with ordinal predictors. International Statistical Review, 77, 345–365.
- Hofner, B., Hothorn, T., Kneib, T., & Schmid, M. (2009). A framework for unbiased model selection based on boosting (Tech. Rep. No. 72). Department of Statistics, Ludwig-Maximilans-Universität München.
 Hothorn, T., Bühlmann, P., Kneib, T., Schmid, M., & Hofner, B. (2010). mboost: Model-based boosting. (R package version 2.0-3)

Find out more: http://benjaminhofner.de/