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Introduction

Introduction

Cox PH model:

λi (t) = λ(t, xi ) = λ0(t) exp(x′iβ)

with

λi (t) hazard rate of observation i [i = 1, . . . , n]

λ0(t) baseline hazard rate

xi vector of covariates for observation i [i = 1, . . . , n]

β vector of regression coefficients

Problem: restrictive model, not allowing for

non-proportional hazards (e.g., time-varying effects)

non-linear effects
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Technical Preparations Structured Survival Models

Structured Survival Models

Generalization: Structured Survival Models
(Kneib & Fahrmeir, 2007)

λi (t) = exp(ηi (t))

with additive predictor

ηi (t) =
L∑

l=1

fl(xi(t)),

Generic representation of covariate effects fl(xi )

a) linear effects: fl(xi (t)) = fl ,linear(x̃i ) = x̃iβ
b) smooth effects: fl(xi (t)) = fl ,smooth(x̃i )
c) time-varying effects: fl(xi (t)) = fl ,smooth(t) · x̃i

where x̃i is a covariate from xi (t).

Note:

c) includes log-baseline (x̃i ≡ 1)
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Technical Preparations P-Splines

P-Splines

flexible terms can be represented using P-splines
(Eilers & Marx, 1996)

model term (x can be either x̃i or t):

fl ,smooth(x) =
M∑

m=1

βlmBlm(x)

penalty: penl(βl) = κl βl
′Kβl cases b), c)

(penl(βl) = 0 in case a))

with

K = D′D (i.e., cross product of difference matrix D)

D
e.g .
=

(
1 −2 1 . . .
0 1 −2 1 . . .

)
κl smoothing parameter
(larger κl ⇒more penalization ⇒ smoother fit)
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Technical Preparations Estimation

Estimation

Penalized Likelihood Criterion: (NB: this is the full log-likelihood)

Lpen(β) =
n∑

i=1

[
δiηi (ti )−

∫ ti

0
exp(ηi (t)) dt

]
−

L∑
l=0

penl(βl)

Ti true survival time

Ci censoring time

ti = min(Ti ,Ci ) observed survival time (right censoring)

δi = 1(Ti ≤ Ci ) indicator for non-censoring

Problem:

Estimation and in particular model choice
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CoxFlexBoost

CoxFlexBoost

Aim:

Maximization of a (potentially) high-dimensional log-likelihood with
different modeling alternatives

Thus, we use:

Iterative algorithm

Likelihood-based boosting algorithm

Component-wise base-learners

Therefore:

Use one base-learner gj(·) for each covariate
(or each model component) [ j ∈ {1, . . . , J} ]

Component-Wise Boosting

as a means of estimation and variable selection combined with model
choice.
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CoxFlexBoost CoxFlexBoost Algorithm

CoxFlexBoost Algorithm

(i) Initialization: Iteration index m := 0.

Function estimates (for all j ∈ {1, . . . , J}):

f̂
[0]
j (·) ≡ 0

Offset (MLE for constant log hazard):

η̂[0](·) ≡ log

(∑n
i=1 δi∑n
i=1 ti

)
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CoxFlexBoost CoxFlexBoost Algorithm

(ii) Estimation: m := m + 1.
Fit all (linear/P-spline) base-learners separately

ĝj = gj(· ; β̂j), ∀j ∈ {1, . . . , J},
by penalized MLE.

Details on pMLE

β̂j = arg max
β
L[m]

j,pen(β)

with the penalized log-likelihood (analogously as above)

L[m]
j,pen(β) =

nX
i=1

»
δi · (η̂[m−1]

i + gj(xi (ti ); β))

−
Z ti

0

exp
n
η̂

[m−1]
i (̃t) + gj(xi (̃t); β)

o
d t̃

–
− penj(β),

with the additive predictor ηi split

into the estimate from previous iteration η̂
[m−1]
i

and the current base-learner gj(·; β)
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CoxFlexBoost CoxFlexBoost Algorithm

(iii) Selection: Choose base-learner ĝj∗ with

j∗ = arg max
j∈{1,...,J}

L[m]
j ,unpen(β̂j)

(iv) Update:
Function estimates (for all j ∈ {1, . . . , J}):

f̂
[m]
j =

{
f̂

[m−1]
j + ν · ĝj j = j∗

f̂
[m−1]
j j 6= j∗

Additive predictor (= fit):

η̂[m] = η̂[m−1] + ν · ĝj∗

with step-length ν ∈ (0, 1] (here: ν = 0.1)

(v) Stopping rule: Continue iterating steps (ii) to (iv) until m = mstop
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CoxFlexBoost CoxFlexBoost Algorithm

We stated that we use

Component-Wise Boosting

as a means of estimation and variable selection combined with model
choice.

How?
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CoxFlexBoost Variable Selection and Model Choice

Variable Selection and Model Choice
. . . is achieved by

selection of base-learner (in step (iii) of CoxFlexBoost),
i.e., component-wise boosting

and

early stopping,
i.e., choose m̂stop,opt via cross validation, out-of-bag sample, . . .

Variable selection (without model choice):
Define one base-learner per covariate
e.g. flexible base-learner with 4 df

Variable selection and model choice:
Define one base-learner per modelling possibility
But the df must be comparable!
Otherwise: more flexible base-learners are preferred
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CoxFlexBoost Degrees of Freedom

Degrees of Freedom to Specify Smoothness

Specifying df more intuitive than
specifying smoothing parameter κ

Smooth effects comparable to other modeling components,
e.g., linear effects

Use initial d̃f j (
e.g .
= 4) and solve

df(κj)− d̃f j
!

= 0

for κj , where

df(κj) = trace
[Fisher matrix︷︸︸︷

F
[0]
j ( F

[0]
j + κjKj︸ ︷︷ ︸

penalized Fisher matrix

)−1
]

(Gray, 1992).

Problem 1: Not constant over the (boosting) iterations

But simulation studies showed: No big deviation from the initial d̃f j
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CoxFlexBoost Degrees of Freedom

Problem 2

For higher order differences (d ≥ 2): df > 1 (κ→∞)

Polynomial of order d − 1 remains unpenalized

Solution:

Decomposition (based on Kneib, Hothorn, & Tutz, 2008)

fsmooth(x) = β0 + β1x + . . .+ βd−1xd−1︸ ︷︷ ︸
unpenalized, parametric part

+ fsmooth,centered(x)︸ ︷︷ ︸
deviation from polynomial

Add unpenalized part as separate, parametric base-learners

Assign df = 1 to the centered effect (and add as P-spline base-learner)
Analogously for time-varying effects

Technical realization (see Fahrmeir, Kneib, & Lang, 2004):

decomposing the vector of regression coefficients β into (eβunpen,
eβpen) utilizing a

spectral decomposition of the penalty matrix
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CoxFlexBoost Results

Results

Simulation-Results (in short)

Good variable selection strategy

Good model choice strategy if only linear and smooth effects are used

Selection bias in favor of time-varying base-learners (if present)
⇒ standardizing time could be a solution

Estimates are better if decomposition for model choice is used
(compared to one flexible base-learner with 4 df)
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CoxFlexBoost Results

without model choice
(fsmooth(x1))
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with model choice
(flinear(x1) + fsmooth,centered(x1))
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CoxFlexBoost Results

without model choice
(fsmooth(x4))
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Summary / Outlook

Summary & Outlook

R-package CoxFlexBoost available (Hofner, 2008)

CoxFlexBoost . . .

. . . allows for variable selection and model choice.

. . . allows for flexible modeling

flexible, non-linear effects
time-varying effects (i.e., non-proportional hazards)

. . . provides convenient functions to manipulate and show results
(summary(), plot(), subset(), . . . )
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