Model Choice in Cox-Type Additive Hazard Regression Models with Time-Varying Effects

Benjamin Hofner¹ Wolfgang Hartl Helmut Küchenhoff Thomas Kneib

Department of Statistics Statistical Consulting Unit Ludwig-Maximilians-Universität München

11.03.2008

¹benjamin.hofner@stat.uni-muenchen.de

Introduction

Cox PH model:

$$\lambda_i(t) = \lambda(t, \mathbf{z}_i) = \lambda_0(t) \exp(\mathbf{z}'_i \boldsymbol{\gamma})$$

with

- $\lambda_i(t)$ hazard rate of observation i [i = 1, ..., n]
- $\lambda_0(t)$ baseline hazard rate
- \mathbf{z}_i vector of covariates for observation $i \ [i = 1, ..., n]$
- γ vector of regression coefficients

Problem: restrictive model, not allowing for

- non-proportional hazards (i.e. time-varying effects)
- non-linear effects

Motivation

Motivation from Application

- Why do we need time-varying and non-linear effects?
- Why do we need variable selection?

Answer: Data at hand

- Question: treatment benefit in terms of 90-day survival
- retrospective study \Rightarrow sensible confounder model needed allowing for
 - variable selection (which variables)
 - model choice (how to model these)

Motivation

Motivation from Application

- Why do we need time-varying and non-linear effects?
- Why do we need variable selection?

Answer: Data at hand

- Question: treatment benefit in terms of 90-day survival
- retrospective study \Rightarrow sensible confounder model needed allowing for
 - variable selection (which variables)
 - model choice (how to model these)

Additive Hazard Regression P-splines Inference Model Choice

Semiparametric Representation

Generalisation: Additive Hazard Regression [Kneib & Fahrmeir, 2007]

$$\lambda_i(t) = \exp(\eta_i(t))$$

with $\eta_i(t) = g_0(t) + \sum_{l=1}^L g_l(t)u_{il} + \sum_{j=1}^J f_j(x_{ij}) + \mathbf{z}'_i \boldsymbol{\gamma}$

where

- $g_o(t) = \log(\lambda_0(t))$ log-baseline (\Rightarrow full likelihood available)
- $g_l(t)$ time-varying effects of covariates u_{il} [l = 1, ..., L]
- $f_j(x_{ij})$ smooth effects of covariates x_{ij} [j = 1, ..., J]
- $\mathbf{z}'_i \boldsymbol{\gamma}$ as before

Additive Hazard Regression P-splines Inference Model Choice

P-splines

flexible terms can be represented using P-splines [Eilers & Marx, 1996]

• model term:

$$f_j(x) = \sum_{m=1}^M eta_{jm} B_{jm}(x)$$
 (analogous for g_0 and g_l)

• penalty:

$$pen(\beta_j) = \kappa_j \, \beta_j' \mathbf{K} \beta_j$$
 (analogous for g_0 and g_l)

with

- K = D'D (i.e. cross product of difference matrix D)
- κ_j smoothing parameter

Additive Hazard Regression P-splines Inference Model Choice

Inference

Estimation based on Penalised Likelihood Criterion:

(NB: this is the full log-likelihood)

$$I = \sum_{i=1}^{n} \left[\delta_i \eta_i(t_i) - \int_0^{t_i} \lambda_i(t) dt \right] - \sum_{l=0}^{L} \operatorname{pen}(\beta_l) - \sum_{j=1}^{J} \operatorname{pen}(\beta_j)$$

Estimates for coefficients **and** smoothing parameters: using mixed model based inference [Kneib & Fahrmeir, 2007] (implemented in BayesX)

- *T_i* true survival time
- C_i censoring time
- $t_i = \min(T_i, C_i)$ observed survival time (right censoring)
- $\delta_i = \mathbb{1}(T_i \leq C_i)$ indicator for non-censoring

Additive Hazard Regression P-splines Inference Model Choice

Model Choice

First Conclusion

- Estimation possible (given model structure)
- Variable selection (what to include) and model choice (how to include) not straight forward
- ⇒ Two-Stage Stepwise Procedure [Hofner et al., 2008]

Side Note on Information Criterion

Remember: Estimation in a mixed model framework Penalty represented by Gaussian random effects most frequently used in this context: marginal AIC (not suitable here) ⇒ **use conditional AIC** instead:

$$AIC_c = -2I + 2df$$

Additive Hazard Regression P-splines Inference Model Choice

Model Choice

First Conclusion

- Estimation possible (given model structure)
- Variable selection (what to include) and model choice (how to include) not straight forward
- ⇒ Two-Stage Stepwise Procedure [Hofner et al., 2008]

Side Note on Information Criterion

Remember: Estimation in a mixed model framework
Penalty represented by Gaussian random effects
most frequently used in this context: marginal AIC (not suitable here)
⇒ use conditional AIC instead:

$$AIC_c = -2I + 2df$$

Toy Example

Two-Stage Stepwise Procedure

Starting Model: typically: empty model

(i.e. only baseline hazard rate)

Initial Choice Set: covariates not already included in the starting model

(i) Modelling Alternatives:

for each covariate in the choice set

- categorical: fixed vs. time-varying effect
- continuous: fixed vs. nonparametric vs. time-varying effect

(ii) Estimation of Models:

for each covariate and each modelling possibility:

- add effect to current model
- estimate hazard regression model
- store conditional AIC

Toy Example

Two-Stage Stepwise Procedure (ctd.)

(iii) Selection Step with stopping criterion:

- *Improvement of* AIC_c:
 - current model := best-fitting model (i.e. with min(AIC_c))
 - delete corresponding covariate from choice set
 - continue with step (iv)
- Otherwise:
 - terminate the algorithm

(iv) Backward Deletion:

- perform (classical) backward deletion step on current model
- Improvement \Rightarrow add deleted covariate to choice set
- continue with step (i)

Toy Example

Toy Example

				AIC _c in step	0	
Variable	Modelling Alternative	1		2		3
(stage 1)	(stage 2)					
Apache II score	linear	3188.09		-		-
(continuous)	smooth	3186.21		-	i i i i i i i i i i i i i i i i i i i	-
	time-varying	3188.37	etic	-	etic	-
palliative operation	linear	3530.43	lica	3176.31	ver	-
(categorical)	time-varying	3532.26	app	3177.98	pr or	-
age	linear	3524.45	ot a	3178.18	l ŵ.E	3168.55
(continuous)	smooth	3525.74	act	3178.37	not	3168.58
	time-varying	4073.94	P -	3697.34	P	3685.98

Question / Data Some Changes Results

Question / Data

Detailed Question:

Do surgical patients with severe sepsis have a treatment benefit in terms of 90-day survival from an activity-guided antithrombin III (AT 3) therapy?

Some more details on data

- response: 90-day survival
- predictors: 14 categorical predictors, 6 continous predictors
- **origin:** local database (Department of Surgery, Campus Großhadern, LMU Munich)
- **period of observation:** March 1st, 1993 February 28th, 2005
- N: 545 septic patients [Moubarak et al., 2008] (462 complete cases used, 180 observations right-censored)

Question / Data Some Changes Results

Some Changes in Fitting Procedure

Two-Stage Stepwise Procedure used for the Großhadern dataset:

- Starting Model not empty: 6 preset variables (age, sex, ...)
 - modelling alternatives not fixed
 - ⇒ Two-Stage Stepwise Procedure without stopping criterion (i.e. model choice without variable selection)
- Build confounder model with starting model (NB: variables from starting model are not subject to backward deletion)
- Last step: add "AT 3"

Question / Data Some Changes Results

Results: Confounder Model

Confounder model consists of

- 6 preset variables and
- 8 additional variables

with

- 3 smooth terms and
- 2 time-varying terms (only chosen for binary variables)

Question / Data Some Changes Results

Results: Confounder Model (ctd.)

Time-Varing Effects (shown as log(baseline) in subgroups)

Question / Data Some Changes Results

Results for AT3

Adding AT 3 as linear term leads to:

β_{AT3}	0.0385
Std. Dev.	0.1473
95% CI	[-0.250, 0.327]

$exp{\beta_{AT3}}$	1.0393		
95% CI	[0.779, 1.387]		

p-value 0.7937

Adding AT 3 as time-varying term leads to:

Question / Data Some Changes Results

Results for AT3

Adding AT 3 as linear term leads to:

β_{AT3}	0.0385
Std. Dev.	0.1473
95% CI	[-0.250, 0.327]

$exp{\beta_{AT3}}$	1.0393
95% CI	[0.779, 1.387]

p-value	0.7937
---------	--------

Literature

Summary & Outlook

Two-Stage Stepwise Procedure...

- ... allows variable selection and model choice.
- ... allows flexible modelling (e.g. non-proportional hazard models).
- ... is not only applicable in survival models but in any type of flexible regression model.
- ... is expandable to interactions, spatial effects,
- ... could be used with fractional polynomials and other approaches.

Literature

Literature

- EILERS, P.H.C. & MARX, B.D. (1996). Flexible smoothing using B-splines and penalties. *Statistical Science*, **11**, 89–121.
- HOFNER, B., KNEIB, T., HARTL, W., KÜCHENHOFF, H. (2008). Model Choice in Cox-Type Additive Hazard Regression Models with Time-Varying Effects. *In Preparation*.
- KNEIB, T. & FAHRMEIR, L. (2007) A mixed model approach for geoadditive hazard regression. *Scand. J. Statist.*, 34, 207–228.
- MOUBARAK, P., ZILKER, S., WOLF, H., HOFNER, B., KNEIB, T., KÜCHENHOFF, H., JAUCH, K.-W. & HARTL. W. H. (2008). Activity-guided antithrombin III therapy in severe surgical sepsis: Efficacy and safety according to a retrospective data analysis. *Submitted to Shock*.